
Solution to the Open Problem: AnsProlog

encoding of win and lose (Chs 2,4)

The goal here is to develop an AnsProlog program that has the same charac-
terization of winning and losing as the following logic program with respect
to the well-founded semantics.

win(X) ← move(X, Y),not win(Y).
an arbitrary set of ‘move’ facts.

We will now give another characterization of this which does not appeal to
the well-founded semantics.

1. We have a set of nodes.

2. We are given a set of facts about a binary predicate move. Intuitively,
move(a, b) means that there is an available move from node a to node
b.

3. A strategy S is a function from nodes to nodes such that S(X) = Y
only if move(X,Y) is true.

4. Given two strategies S1 and S2, and a node a we define the trajectory
followed by alternatively applying S1 and S2 as: traj(a, S1, S2) =
Xa,S1,S2

0 Xa,S1,S2
1 . . ., where

Xa,S1,S2
0 = a

Xa,S1,S2

k+1 = S1(X
a,S1,S2

k) if k is even
= S2(X

a,S1,S2

k) if k is odd

5. The length of a trajectory X0X1 . . . Xk is k.

6. A node a is said to be a winning node if there exists S1 such that for
all S2 the sequence traj(a, S1, S2) terminates and its length is odd.

1

CB, ASU DRAFT 2

7. A node a is said to be a losing node if for all S1 there exists S2 such
that the sequence traj(a, S1, S2) terminates and its length is even.

Question 1: Write an AnsProlog program Π whose answer set semantics
corresponds to the win and lose above. (The solution to this is known.)

Question 2: Write an AnsProlog program Π which has a unique answer set
corresponding to the win and lose above. (To the best of my knowledge,
this is an open problem.)

Acknowledgement: Bertram Ludaescher first posed this question to me in
July 2002. Later in August 2002 I discussed this with Vladimir Lifschitz
and his group in Austin. The above formulation was developed during my
presentation in Austin.

A solution to Question 2 has been given by Carlos Damasio (cd@di.fct.unl.pt)
on 1/22/04. See the next page for the solution.

CB, ASU DRAFT 3

The Solution

The solution is based on simulating the well-founded semantics. Recall that
answer sets (stable models) are defined as fixpoints of an operator F . The
well-founded semantics is given as the pair 〈lfp(F 2),HB \ gfp(F 2)〉, and
lfp(F 2) can be computed iteratively by applying F 2 repeatedly starting
from ∅ until a fixpoint is reached. gfp(F 2) is obtained by applying F to
lfp(F 2).

The Solution consists of the following:

1. Defining node:

node(X) ← move(X,Y).
node(Y) ← move(X, Y).

2. Defining int:

int(0). . . . int(max).

where max is an even number large enough that F 2 reaches the least
fixpoint by then.

3. Defining win aux: This predicate computes win at different iterations
of F .

win aux(X,S + 1) ← int(S),move(X, Y), not win aux(Y, S).

4. Defining win, ¬win, and draw:

win(X) ← win aux(X, max).

¬win(X) ← node(X), not win aux(X,max− 1).

draw(X) ← node(X), not win(X), not ¬win(X).

CB, ASU DRAFT 4

Following is the solution in Smodels.

#maxint=20.

node(a;b;c;d;e;f;g)

move(a,b).

move(b,c).

move(b,d).

move(b,g).

move(c,c).

move(d,f).

move(f,d).

winaux(X, S) :- #int(S), move(X,Y), #succ(S1,S), not winaux(Y,S1).

win(X) :- winaux(X,#maxint).

-win(X) :- node(X), #succ(S1,#maxint), not winaux(X, S1).

draw(X) :- node(X), not win(X), not -win(X).

It is fundamental that #maxint is an even number. When S is odd steps
we compute F by predicate winaux(,S) and in even steps F 2, and thats it.

This technique can be used in general for computing the WFM by ASP.

You can also include some rules for detecting the fixpoint of F 2, like the
ones below. In this way you do not need anymore to enforce #maxint to be
an even number.

CB, ASU DRAFT 5

It just has to be big enough. I think that it is possible to change winaux/2
in order to stop after end. That is not difficult, after having end.

win(X) :- end(S), winaux(X,S).

-win(X) :- end(S), #succ(S1,S), node(X), not winaux(X, S1).

draw(X) :- node(X), not win(X), not -win(X).

end(S) :- #int(S1), S1 >= 1, S = 2 * S1, not change(S), not
ended_before(S).

ended_before (S) :- end(S1), #int(S), S1 < S .

change(S) :- winaux(X,S), #succ(S1,S), #succ(S2,S1), not
winaux(X,S2).

