Solution to the Open Problem: AnsProlog

encoding of win and lose (Chs 2,4)

The goal here is to develop an AnsProlog program that has the same charac-
terization of winning and losing as the following logic program with respect
to the well-founded semantics.

win(X) <« move(X,Y),not win(Y).

an arbitrary set of ‘move’ facts.

We will now give another characterization of this which does not appeal to
the well-founded semantics.

1.

2.

We have a set of nodes.

We are given a set of facts about a binary predicate move. Intuitively,

move(a, b) means that there is an available move from node a to node
b.

A strategy S is a function from nodes to nodes such that S(X) =Y
only if move(X,Y) is true.

Given two strategies S1 and So, and a node a we define the trajectory
followed by alternatively applying S; and S as: traj(a,Si,S2) =
X(‘)L’Sl’S?Xf’Sl’S2 ..., where

xS52 _
X{Pb% = S1(XP5%2) if k is even

k+1
= Sy(X25%) if k is odd
The length of a trajectory XoX; ... Xy is k.

A node a is said to be a winning node if there exists S7 such that for
all S the sequence traj(a,Si, S2) terminates and its length is odd.

CB, ASU DRAFT 2

7. A node a is said to be a losing node if for all S; there exists S5 such
that the sequence traj(a, S1, S2) terminates and its length is even.

Question 1: Write an AnsProlog program IT whose answer set semantics
corresponds to the win and lose above. (The solution to this is known.)

Question 2: Write an AnsProlog program IT which has a unique answer set
corresponding to the win and lose above. (To the best of my knowledge,
this is an open problem.)

Acknowledgement: Bertram Ludaescher first posed this question to me in
July 2002. Later in August 2002 I discussed this with Vladimir Lifschitz
and his group in Austin. The above formulation was developed during my
presentation in Austin.

A solution to Question 2 has been given by Carlos Damasio (cd@di.fct.unl.pt)
on 1/22/04. See the next page for the solution.

CB, ASU DRAFT 3

The Solution

The solution is based on simulating the well-founded semantics. Recall that
answer sets (stable models) are defined as fixpoints of an operator F'. The
well-founded semantics is given as the pair (Ifp(F?), HB \ gfp(F?)), and
Ifp(F?) can be computed iteratively by applying F? repeatedly starting
from) until a fixpoint is reached. gfp(F?) is obtained by applying F to
Lfp(F2).

The Solution consists of the following:

1. Defining node:

node(X) «— move(X,Y).
node(Y) «— move(X,Y).

2. Defining int:
int(0). ...int(max).

where maz is an even number large enough that F? reaches the least
fixpoint by then.

3. Defining win_aux: This predicate computes win at different iterations
of F.

win_auz(X, S + 1) « int(S), move(X,Y), not win_auz(Y,S).
4. Defining win, —~win, and draw:

win(X) «— win_aux(X, max).

—win(X) <« node(X), not win_aux(X,maxr — 1).

draw(X) <« node(X), not win(X), not ~win(X).

CB, ASU DRAFT 4

Following is the solution in Smodels.

#maxint=20.
node(a;b;c;d;e;f;g)
move(a,b).
move(b,c) .
move(b,d) .
move(b,g) .
move(c,c).
move(d,f).

move (f,d) .

winaux(X, S) :- #int(S), move(X,Y), #succ(S1,S), not winaux(Y,S1).
win(X) :- winaux(X,#maxint).
-win(X) :- node(X), #succ(S1,#maxint), not winaux(X, S1).

draw(X) :- node(X), not win(X), not -win(X).

It is fundamental that #maxint is an even number. When S is odd steps
we compute F' by predicate winaux(_,S) and in even steps F2, and thats it.

This technique can be used in general for computing the WEM by ASP.

You can also include some rules for detecting the fixpoint of F2, like the
ones below. In this way you do not need anymore to enforce #maxint to be
an even number.

CB, ASU DRAFT 5

It just has to be big enough. I think that it is possible to change winaux/2
in order to stop after end. That is not difficult, after having end.

win(X) :- end(S), winaux(X,S).
-win(X) :- end(S), #succ(S1,S), node(X), not winaux(X, S1).
draw(X) :- node(X), not win(X), not -win(X).

end(S) :- #int(S1), S1 >= 1, S = 2 * S1, not change(S), not
ended_before(S).

ended_before (S) :- end(S1), #int(S), S1 < S .

change(S) :- winaux(X,S), #succ(S1,8), #succ(S2,S1), not
winaux(X,S2).

